An Assessment of Hermite Function Based Approximations of Mutual Information Applied to Independent Component Analysis
نویسنده
چکیده
At the heart of many ICA techniques is a nonparametric estimate of an information measure, usually via nonparametric density estimation, for example, kernel density estimation. While not as popular as kernel density estimators, orthogonal functions can be used for nonparametric density estimation (via a truncated series expansion whose coefficients are calculated from the observed data). While such estimators do not necessarily yield a valid density, which kernel density estimators do, they are faster to calculate than kernel density estimators, in particular for a modified version of Renyi’s entropy of order 2. In this paper, we compare the performance of ICA using Hermite series based estimates of Shannon’s and Renyi’s mutual information, to that of Gaussian kernel based estimates. The comparisons also include ICA using the RADICAL estimate of Shannon’s entropy and a FastICA estimate of neg-entropy.
منابع مشابه
Rank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملSequential Fixed-Point ICA Based on Mutual Information Minimization
A new gradient technique is introduced for linear independent component analysis (ICA) based on the Edgeworth expansion of mutual information, for which the algorithm operates sequentially using fixed-point iterations. In order to address the adverse effect of outliers, a robust version of the Edgeworth expansion is adopted, in terms of robust cumulants, and robust derivatives of the Hermite po...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملکاربرد الگوریتم جداسازی کور منابع در جداسازی سیگنالهای گفتار و موسیقی
In this paper, the application of the Independent Component Analysis In this paper, the application of the Independent Component Analysis technique in speech-music separation is discussed. The separation algorithm is in the time domain. It needs the score function estimation to minimize the mutual information. For estimating score function, sufficient samples of the mixed (speech-music) signals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 10 شماره
صفحات -
تاریخ انتشار 2008